
Klaros-Testmanagement Tutorial

Version 4.12.7

Publication date April 17 2020

Copyright © 2009-2020 verit Informationssysteme GmbH

Klaros-Testmanagement Tutorial
by Sabrina Gidley, Fabian Klaffke, Klaus Mandola, Patrick Reilly, Tobias Schmitt, and Torsten Stolpmann

Version 4.12.7

Publication date April 17 2020
Copyright © 2009-2020 verit Informationssysteme GmbH

Abstract

This document serves as a tutorial for the Klaros-Testmanagement application. It gives an example tour
through the application and the provided functionality.

Legal Notice . Copyright 2009-2020 verit Informationssysteme GmbH, Europaallee 10, 67657 Kaiserslautern, Germany. All
rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or documentation may be reproduced in any form by any means without
prior written authorization of verit Informationssysteme GmbH and its licensors, if any.

Trademarks

Oracle™, Java™ and Solaris™ are registered trademarks of Oracle and/or their affiliates.

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.

JIRA® is a registered trademark of Atlassian Pty Ltd.

Other names may be trademarks of their respective owners.

Third party software and licenses

This product contains software covered by the following licenses:

OTN License Agreement (OTN) . This application contains Oracle JDBC Driver. Please read http://www.oracle.
com/technology/index.html for more details on JDBC Driver License agreement. JDBC Driver and all associated
intellectual property rights are retained by Oracle Corporation and/or its licensors. To use JDBC Driver included
this application, you need to agree with Oracle Technology Network Development and Distribution License Terms.
If you don't, you can't use this application.

Lesser GNU Public License (LGPL 2.1) .

• JasperReports

This product uses software available under the Apache Software License (ASL 2.0) .

This product uses icons from the Tango Desktop Project (http://tango.freedesktop.org/) which are released to
the Public Domain. We thank the authors for their generous work. .

This product uses icons from the Fugue Icon Set (http://www.pinvoke.com/) which are available under a Creative
Commons Attribution 3.0 license. .

http://www.oracle.com/technology/software/htdocs/distlic.html
http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/software/htdocs/distlic.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt
http://sourceforge.net/projects/jasperreports/
http://www.apache.org/licenses/LICENSE-2.0.txt
http://tango.freedesktop.org/
http://www.pinvoke.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Table of Contents
1. Introduction ... 1

1.1. Navigation ... 1
2. Quick Start Guide ... 2

2.1. Setup .. 2
2.1.1. Creating a Project ... 2
2.1.2. Creating Test Environments ... 5
2.1.3. Executing Tests .. 11
2.1.4. Results and Reports .. 15

3. How-Tos .. 18
3.1. User Role Management .. 18

3.1.1. Limiting Project Access ... 18
3.2. Categorization ... 20
3.3. User Defined Properties ... 22
3.4. Pausing and Resuming Test Runs .. 24
3.5. Configuring Issue Management System .. 24
3.6. Issues ... 26

3.6.1. Linking Issues ... 26
3.6.2. Creating Issues ... 27

3.7. Revisions ... 28
3.8. Requirements .. 29
3.9. Iterations ... 30

4. Report Tutorial ... 33
4.1. Development Environment .. 33
4.2. Preparing the Data for the Report ... 38
4.3. Create the Layout of the Report .. 40

Glossary .. 49

iv

List of Figures
1.1. Navigation in Klaros-Testmanagement .. 1
2.1. The Projects page ... 2
2.2. The Properties tab in the Project page .. 3
2.3. Adding User Defined Properties .. 4
2.4. The Test Environment page .. 5
2.5. Creating Categories ... 6
2.6. Assigning Test Environments to Categories .. 6
2.7. The Test Environment Categories ... 7
2.8. The System under Test page .. 7
2.9. The System under Test page .. 8
2.10. The Test Cases page ... 9
2.11. The Test Case Step tab in the Test Cases page ... 9
2.12. The Test Suites page ... 10
2.13. The Test Suite page ... 11
2.14. The Run TestCase page ... 11
2.15. The Run Test Case page .. 12
2.16. The Test Case Runner .. 12
2.17. The Results Overview in the Manual Test Runner ... 13
2.18. The Run Test Suite page .. 14
2.19. The Run Test Suite page .. 14
2.20. The test suite runner .. 15
2.21. The Dashboard .. 16
2.22. The Test Case Results page ... 16
2.23. The Test Case Result page ... 17
2.24. The Test Run page ... 17
3.1. The Access tab .. 19
3.2. A Project with Limited Access .. 19
3.3. Creating Categories ... 20
3.4. Assigning Test Environments to Categories .. 21
3.5. The Test Environment Categories ... 22
3.6. Adding User Defined Properties .. 23
3.7. Continuing a Test Run ... 24
3.8. The Issue Management page ... 25
3.9. Linking Issues ... 26
3.10. Creating Issues .. 27
3.11. The Requirements Page ... 29
3.12. The Requirements Details Page .. 30
3.13. The Iterations Page .. 31
3.14. The Selected Iteration in the Topbar ... 31
3.15. The Iteration Details Page .. 31
4.1. The Wizard Selection Screen .. 33
4.2. The New Project Wizard ... 34
4.3. The Package Explorer .. 35
4.4. Creating a New Folder ... 36
4.5. The Build Path Setting Screen .. 37
4.6. Selecting an External Jar File ... 37
4.7. The Package Explorer .. 38

v

Klaros-Testmanagement Tutorial

4.8. Creating a Class .. 38
4.9. The Created Class ... 39
4.10. A Sample Front Page of a Report ... 42
4.11. A Generated Pie Chart ... 43
4.12. The Header of a Test Case Report .. 44

vi

List of Tables
3.1. User Roles ... 25

vii

Chapter 1. Introduction
Klaros-Testmanagement is an easy to use web based application which helps to organize test
projects. It manages test cases, test suites, information about systems under test and test envi-
ronments in which tests have been run. When a test case or test suite has been executed, its re-
sult, including the information about the system under test and its test environment, is stored in a
database. This enables full traceability of all test runs. Multiple reports enable a detailed overview
of the progress of the project at any time.

1.1. Navigation

Throughout this tutorial you will find instructions for navigating through Klaros-Testmanagement.
Figure 1.1 shows a typical page with the navigation areas numbered.

Figure 1.1. Navigation in Klaros-Testmanagement

The User Interface of Klaros-Testmanagement

1. The topbar. This can be used to navigate between the main sections of Klaros-Testmanage-
ment.

2. The sidebar contains the menu entries. If you select a specific section via the topbar, the menu
entries for this section are displayed in the sidebar.

3. The log panel displays various information, warnings and error messages.

4. Most tables within Klaros-Testmanagement have an action column like this one. The icons in
this column execute actions for the object in the row, e.g. in this case, pressing the icon of
the project P00020 will open the details page of the Ordering Process project.

5. Many pages in Klaros-Testmanagement have buttons like this to perform actions like creating
new objects, or saving or discarding changes. These buttons are located at the bottom of the
screen to the left or right hand side.

1

Chapter 2. Quick Start Guide
This section of the tutorial covers the creation of a project, several test cases and a test suite.
In addition, the test cases and the test suite will be executed and as a last step, test reports will
be generated from the test results. The example project in this guide involves both hardware and
software components. For this example, we will consider a printer as our system under test.

Our printer has both hardware and software components which must be tested, as well as various
versions of each to be tested in different environments. A good example here are the printer dri-
vers, which have different versions for Windows and Linux, and must also be tested in different
versions of each.

The different sorts of testing that must be done require different teams of testers. For our tutorial
we will consider two different teams, the hardware team and the software team. The different
teams have different issue management systems to track defects. The hardware team uses JIRA,
while the software team uses Mantis.

2.1. Setup

In order to execute and evaluate test cases, you will have to create the test cases itself and also
all related test artifacts (e.g. the test environments in which the test cases will be executed) in
Klaros-Testmanagement. In this chapter we will create all artifacts which are necessary for the
execution of a single test case.

2.1.1. Creating a Project

Projects are the base test artifacts in Klaros-Testmanagement. All test-related artifacts, e.g. test
cases or test results, are associated with a single project. A project must therefore be selected
in order to engage in any test-related activities. When you first log in to Klaros-Testmanagement
there will be no projects available so you will have to create one.

1. Press the New button to create a new project.

Figure 2.1. The Projects page

2. Enter Printer as the project description.

3. Press the Save button.

Select the newly created project by clicking on the radio button next to its id. You will notice
that more options have become available here in the Define section, and that some of the
buttons in the topbar are no longer grayed out. For now however, we want to edit the project
that we have just created.

2

Quick Start Guide

2.1.1.1. Assigning Issue Management Systems

1. Press the icon to go to the Project Details page.

2. Click on the Integration and then on the Issue Management tab.

3. Select the issue management system you want to add by clicking on it, and then click on the
arrow pointing left.

Figure 2.2. The Properties tab in the Project page

4. Press the Save button.

2.1.1.2. Creating User-Defined Properties

 Feature only available in Klaros-Testmanagement Enterprise Edition

Now is a good time to create some user defined properties for the project to allow for more ac-
curate searching of elements in the project. The process of creating user defined properties is
explained in Section 3.3, “ User Defined Properties ”.

Since the SUTs in our example are printers, there are a number of properties that will make search-
ing through them easier. One of these is the firmware version, an alpha-numeric value which is
changed relatively often.

1. Select the User Defined tab.

2. Click the New button.

3

Quick Start Guide

Figure 2.3. Adding User Defined Properties

3. Select System Under Test in the Object column.

4. Select Text in the Type column.

5. Enter Firmware Version in the Name text field.

6. Press the Save button.

7. A second property we can use to search through our SUTs is the model of printerhead used
in the printer. Since our company has only two different printerhead models, it makes sense
to make this an enumeration property.

8. Click the New button.

9. Select System Under Test in the Object column.

10. Select Enumeration ind the Typecolumn.

11. Enter Printerhead Model in the Name text field.

12. Press the icon in the Type column to add enumeration values.

13. Enter Model 1 in the Entry text field and press the

14. Enter Model 2 in the Entry field and press the icon.

15.

16. Press the Confirm button.

Press the Save button.

4

Quick Start Guide

2.1.2. Creating Test Environments

The next step in setting up a Klaros-Testmanagement project is to create some test environments
to test in. In Klaros-Testmanagement, a test environment is a description of the extrinsic settings
that may influence the test result. This could be the operating system used with the printer or even
the physical environment used for the test.

For this tutorial, we will create two software-related and two hardware-related test environments.

1. Press the Test Environments link in the sidebar.

2. Press the New button.

Figure 2.4. The Test Environment page

3. Enter Ubuntu 11.4 in the Description text field.

4. Press the Save button.

5. Next, create three more Test Environments with the following values in the Description text
field:

• Windows 7

• Average Room temperature

• Maximum Operating Temperature

6. Press the Save button.

7. Press the Save button.

2.1.2.1. Assigning Test Environments to Categories

 Feature only available in Klaros-Testmanagement Enterprise Edition

Now is a good time to use the categorization feature at this stage. See Section 3.2, “ Categorization
”.

1. Press the Categories label to expand the category creation and ???

2. Press the icon.

3. Press the icon to create a new category group.

5

Quick Start Guide

Figure 2.5. Creating Categories

4. Press the icon on the newly created ROOT category (this is the root category of this
category group).

5. Enter Hardware in the text field of the new category.

6. Press the icon on the ROOT category again.

7. Enter Software in the text field of the new category.

8. Press the Save button.

9. Switch to the tree view by clicking on the icon.

10. Select the checkboxes beside each of the software-related test environments (Windows 7

and Ubuntu 10.4). .

11. Press the icon.

12. Press the Software entry in the popup.

Figure 2.6. Assigning Test Environments to Categories

6

Quick Start Guide

13. Press the Assign button.

14. Select the checkbox beside each of the hardware-related test environments.

15. Press the icon.

16. Press the Hardware entry in the popup.

17. Press the Assign button.

Figure 2.7. The Test Environment Categories

From now on, all test environments can be viewed as normal if the category panel is closed, and
opening the category panel allows for selective viewing of the particular categories of test envi-
ronments.

2.1.2.2. Creating Systems under Test

Next we should create some systems under test. In Klaros-Testmanagement, systems under test
represent the versions of the product or software system to be tested. In our example, these will
be various printers.

1. Press the Systems under Test menu entry in the sidebar.

2. Press the New button.

Figure 2.8. The System under Test page

3. Enter the text Printer Model 1 in the Version field.

4. Press the Save button.

5. Repeat the process for three more systems under test:

7

Quick Start Guide

Versions

• Printer Model 2

• Printer Model 3

• Printer Model 4

2.1.2.2.1. Assigning User Defined Property Values

 Feature only available in Klaros-Testmanagement Enterprise Edition

Please refer to Section 3.3, “ User Defined Properties ” how to create user defined properties and
create a String property Firmware Version and an enumeration property Printerhead Model with
the values Model 1 and Model 2 for systems under test. Then you can set values for them.

1. Press the icon for Printer Model 1.

2. Press the User Defined tab.

3. Select Model 1 in the Printerhead Model dropdown list.

4. Enter V23.41.06 in the Firmware Version field.

5. Press the Save button.

Figure 2.9. The System under Test page

6. Press the Save button.

7. Repeat the process for the other three systems under test:

Version Firmware Version Printerhead Model

Printer Model 2 V23.41.07B Model 2

Printer Model 3 V23.41.07B Model 1

Printer Model 4 V23.41.05 Model 2

2.1.2.3. Creating Test Cases

Now it is time to create some test cases. In Klaros-Testmanagement, test cases represent indi-
vidual tests to be carried out. We will create test cases for each of the hardware and software
teams. First we will create a few hardware test cases. The first test is a verification that the printer
upholds our claims about its minimum pages per minute rate.

1. Press the Test Cases menu entry in the sidebar.

8

Quick Start Guide

2. Press the New button.

Figure 2.10. The Test Cases page

3. Enter Test if the printer prints at least 10 page per minute in the Name field.

4. Select Manual in the Execution field.

5. Press the Save button.

6. Press the edit icon on the newly created test case.

7. Select the Steps tab.

Figure 2.11. The Test Case Step tab in the Test Cases page

8. Create the following Steps:

Description Expected Result

Start printing the test document

Start the timer when the first page

lands in the tray

9

Quick Start Guide

Description Expected Result

Stop timer when the last page lands in

the tray

9. Press the Save button.

10. Next, create the following test cases (each with one test case step):

Name Execution Step Description Step Expected Result

Prints test page Manual Print the test page

using the OS UI

Page prints

Detects empty Manuel Insert empty Printer display shows

"Cartridge empty"

warning

Now you should have three test cases.

2.1.2.4. Creating Test Suites

The final step in preparation for testing with Klaros-Testmanagement is the creation of test suites.
In Klaros-Testmanagement, test suites represent groups of tests to be carried out in sequence.
A test suite contains one or more test cases and can be executed as a unit, which allows test
results to be grouped together.

Note

A test suite can contain the same test case multiple times.

1. Press the Test Suites link in the sidebar.

2. Press the New button.

Figure 2.12. The Test Suites page

3. Enter Tutorial Hardware Suite in the Name field.

4. Press the Save button.

5. Press the icon.

6. Click on the Properties tab.

7. Press the icon on the Detects empty and the Test if the printer prints at least

10 pages per minute test cases.

10

Quick Start Guide

Figure 2.13. The Test Suite page

8. Press the Save button

Now our project is set up and we can begin testing!

2.1.3. Executing Tests

Now that we have created some test cases and a test suite, we are ready for some testing. Log
out of Klaros-Testmanagement and log in as a tester. This is a more limited account which can
execute tests and only data linked to the account.

2.1.3.1. Executing Single Test Cases

In this section, we will execute a single test case multiple times with different parameters.

1. If not already selected, select the Printer project.

2. Press Execute in the topbar.

3. Click on Run TestCase in the sidebar.

4. The Run Test Case screen should now be shown. This screen displays the available test cases
along with an execute icon () for each. The icon is blue if the test case can be executed
in Klaros-Testmanagement, i.e. if Execution is set to Manual, if the test case has at least one
step and its State is either Draft or Approved.

Figure 2.14. The Run TestCase page

Press the icon on the Test if the printer prints at least 10 pages per minute

test case

5. On the next screen, select Average Room Temperature as the Test Environment

11

Quick Start Guide

Figure 2.15. The Run Test Case page

6. Select Printer Model 1 as the System Under Test.

7. Press the Execute button.

8. A popup will appear (if it doesn't, be sure to disable the popup blocker in your browser or add
the Klaros-Testmanagement address to its exceptions). This is the manual test runner, which
guides testers through the testing process. You will see an overview of the test case on the
first page of the manual test runner.

Figure 2.16. The Test Case Runner

12

Quick Start Guide

9. The manual test runner will now show the first step. Action shows what we as a tester are
supposed to do. Let's assume our printer will start printing the test document with no prob-
lems, so the first step is passed.

Press the Passed button.

10. The second step will now be shown. Mark the rest of the steps as passed.

11. Now the Test Run overview will be displayed. Since all steps were passed without complica-
tion, there is no need to comment or create an issue.

Please confirm the following dialog with Yes .

Press the Finish button.

Figure 2.17. The Results Overview in the Manual Test Runner

12. Press Run Test Case in the sidebar.

13. Now we will execute the same test case using a different system under test and test envi-
ronment.

Press the icon on the Test if the printer prints at least 10 pages per minute

test case.

14. On the next screen, select Maximum Operating Temperature as the Test Environment.

15. Select Printer Model 2 as the System Under Test.

16. Press the Execute button.

17. Press the Start button.

13

Quick Start Guide

18. Press the Passed button.

19. Press the Passed button.

20. Printer Model 2 uses the Model 2 printerheads, which have an overheating problem, so this
test step will fail in an environment with a high ambient temperature.

Press the Failure button.

21. Enter Too many pause cycles due to overheating in the Summary field.

These comments will help reproducing the failure.

22. Press the Finish button.

23. If you have set up an issue management system, you can create or link an issue from this
screen. The process is described in Section 3.6, “ Issues ”.

24. Confirm the following dialog by clicking the Yes button.

25. Press the Finish button.

2.1.3.2. Executing Test Suites

Next we will execute our test suite. The process is very similar to executing a test case, with an
additional overview screen at the beginning.

1. Press Run Test Suite in the sidebar.

2. Press the icon for Tutorial Hardware suite.

Figure 2.18. The Run Test Suite page

3. Select Average Room Temperature as the Test Environment

Figure 2.19. The Run Test Suite page

14

Quick Start Guide

4. Select Printer Model 1 as the System under Test.

5. Press the Execute button.

6. Press the Start button in the manual test runner.

Figure 2.20. The test suite runner

7. Press the passed icon for all steps.

8. Confirm the following dialog by clicking the Yes button.

9. Repeat for the second test case.

10. Press the Finish button.

2.1.4. Results and Reports

Now it's time to view the test results and reports. Klaros-Testmanagement contains a feature-rich
test evaluation section which is best viewed using a manager account.

1. Log into Klaros-Testmanagement using a manager account.

2. Select the Printer project if it is not already selected.

3. Press Evaluate in the topbar.

4. Now the dashboard should be displayed, showing some of the default reports for the Print-
er project. These show relevant details like the number of test cases and test suites in the
Project, the overall numbers of passed and failed test runs, and the testing activity in the last
30 days.

15

Quick Start Guide

Figure 2.21. The Dashboard

5. The Latest Success Rate report can be changed by clicking on the Icon. Then you can
select the test system and the test environment to be displayed.

6. You can also view individual test results for test cases and test suites in the Evaluate section.

Press the Test Case Results menu entry in the sidebar.

7. Here you will see the test cases which have been executed in this project, along with a count
of test runs with their results.

Figure 2.22. The Test Case Results page

8. Press the icon for the Test if the printer prints at least 10 pages per minute test case.

9. You will now see a screen summarizing each of the test runs for this test case.

Press the icon for one of the test runs.

16

Quick Start Guide

Figure 2.23. The Test Case Result page

10. This screen shows a breakdown of the results of each step in the test case, as well as the
summary and description the tester has entered for each of them.

Press Test Results - Test Suite Results in the sidebar.

Figure 2.24. The Test Run page

This page shows results of all test cases which have been run in a similar style to the Test
Case Results page. Have a look at the results of the Tutorial Hardware suite.

This rounds up our quick start guide. The following chapter contains in-depth how-tos for most
of the available actions in Klaros-Testmanagement.

17

Chapter 3. How-Tos

This section of the tutorial consists of how-to guides for certain actions in Klaros-Testmanage-
ment. We will continue to use the printer example project from the quick start guide.

It is recommended to complete the quick-start guide first if you wish to follow these guides step-
by-step.

3.1. User Role Management

In this section we will learn how project access works and how to limit the access to our example
project to specific users.

The default installation of Klaros-Testmanagement contains the three users admin, manager and
tester (see the Klaros-Testmanagement documentation here and here for more information
about user roles). If you create a new project (see Section 2.1.1, “ Creating a Project ”) all users
of Klaros-Testmanagement have access to this project. To limit the access to this project to a
single users or several specific users, you can use project specific roles, which are part of Klaros-
Testmanagement Enterprise Edition.

3.1.1. Limiting Project Access

 Feature only available in Klaros-Testmanagement Enterprise Edition

In this section we will limit access to the Printer project. See here for more information about
project specific roles.

Assigning project specific roles

Project specific roles do not need to match the role of the user. For example, a user
with the role test manager can be a tester in one project and a test manager in another
project.

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Define section in the topbar.

3. Press the P00001 label, or the Printer project if you already created more projects.

4. Select the Access tab.

18

http://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.Roles
http://www.klaros-testmanagement.com/files/doc/html/User-Manual.Functions.Accounts
http://www.klaros-testmanagement.com/files/doc/html/User-Manual.Define.Projects.Details.Access

How-Tos

5.

Figure 3.1. The Access tab

6. Click on the Assign button.

7. In the following dialog select the checkbox in front of Max Mustermann and select Test Man-
ager from the Project Role dropdown list (if not already selected)

8. Confirm the changes by clicking on the Apply button.

The only user allowed to view the Printer project now is the user named manager. Administrators
can still view the project, since they are excluded from project access rules. On the projects page,
you can see which projects have access rules defined by the icon in the Additional information

 column.

Figure 3.2. A Project with Limited Access

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Define section in the topbar.

3. Press the P00001 label, or the Printer project in case you have created more projects.

4. Select the Access tab.

5. In the Erika Mustermann column, select Tester in the Project Role dropdown list.

Click on the Assign button.

6. In the following dialog select the checkbox in front of Erika Mustermann and select Tester
from the Project Role dropdown list (if not already selected)

7. Confirm the changes by clicking on the Apply button.

Important

If you use project specific roles, you need to assign at leat one test manager per
project.

19

How-Tos

3.2. Categorization

 Feature only available in Klaros-Testmanagement Enterprise Edition

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.1.2, “ Creating Test Environments ” of the quick-start guide.

In our example project, we have separate test environments and test cases for hardware- and
software-related criteria. A useful way to separate these within in Klaros-Testmanagement Enter-
prise Edition is to use the categorization feature.

Test environments, systems under test, test cases, test suites, requirements and iterations can
all be assigned to categories in different category groups. Each object can only be assigned to
one category in each category group, but there is no limit on the amount of category groups that
may be created.

This how-to describes the process of assigning the test environments created in Section 2.1.2,
“ Creating Test Environments ” of the quick-start guide into hardware- and software-related cate-
gories.

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Printer project.

3. Select the Test Environments menu entry in the sidebar.

4. Press the Categories label to expand the category creation and selection panel.

5. Press the icon.

6. Press the icon to create a new category group.

Figure 3.3. Creating Categories

20

How-Tos

7. Press the icon on the newly created ROOT category (this is the root category of this
category group).

8. Enter Hardware in the text field of the new category.

9. Press the icon on the ROOT category again.

10. Enter Software in the text field of the new category.

11. Press the Save button.

12. Select the checkboxes beside each of the software-related test environments (Windows 7

and Ubuntu 10.4). .

13. Press the icon.

14. Press the Software entry in the popup.

Figure 3.4. Assigning Test Environments to Categories

15. Press the Assign button.

16. Select the checkbox beside each of the hardware-related test environments.

17. Press the icon.

18. Press the Hardware entry in the popup.

19. Press the Assign button.

21

How-Tos

Figure 3.5. The Test Environment Categories

From now on, all test environments can be viewed as normal if the category panel is closed, and
opening the category panel allows for selective viewing of the particular categories of test envi-
ronments.

3.3. User Defined Properties

 Feature only available in Klaros-Testmanagement Enterprise Edition

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.1.1, “ Creating a Project ” of the quick-start guide.

User defined properties are customizable fields which can be added to the various artifacts of
a project e.g. to make it easier to find specific elements or to reference external systems or doc-
uments. In this how-to, we will set up some user defined properties for our systems under test
(or SUTs).

Since the SUTs in our example are printers, there are a number of properties that will make search-
ing through them easier. One of these is the firmware version, an alpha-numeric value which is
changed relatively often.

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Printer project.

3. Press the icon.

4. Select the User Defined tab.

5. Click the New button.

22

How-Tos

Figure 3.6. Adding User Defined Properties

6. Select System Under Test in the Object column.

7. Select Text in the Type column.

8. Enter Firmware Version in the Name text field.

9. A second property we can use to search through our SUTs is the model of printerhead used
in the printer. Since our company has only two different printerhead models, it makes sense
to make this an enumeration property.

Click the New button.

10. Select System Under Test in the Object column.

11. Select Enumeration in the Type column.

12. Enter Printerhead Model in the Name text field.

13. Press the icon in the Type column to add enumeration values.

14. Enter Model 1 in the Entry text field and press the icon.

15. Enter Model 2 in the Entry field and press the icon.

16. Press the Confirm button.

17. Press the Save button.

23

How-Tos

3.4. Pausing and Resuming Test Runs

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.1.2.4, “ Creating Test Suites ” of the quick-start guide.

Klaros-Testmanagement supports pausing and resuming of test suite runs. If the manual test
runner is cancelled after at least one test case has been completed, the test run is automatically
saved in the Continue Test Runs section.

1. Login to Klaros-Testmanagement using the Tester account.

2. Select the Printer project.

3. Navigate to the Execute section using the topbar.

4. Select the Run Test Suite menu entry in the sidebar.

5. Select the Tutorial Hardware test suite.

6. Complete the first test case as explained in Section 2.1.3.2, “ Executing Test Suites ”.

7. Press the Cancel button.

The manual test runner will now close, returning you to the main Klaros-Testmanagement
window.

8. Select the Continue Test Run menu entry in the sidebar.

The interrupted test suite run will now be displayed, showing that one of the two test cases
in the test suite have been completed.

9. You can click the icon to continue executing the test suite or the icon to delete this
test suite run and the associated results.

Figure 3.7. Continuing a Test Run

3.5. Configuring Issue Management System

In order to set up Klaros-Testmanagement to use issue management systems, you must log in
as an administrator.

24

How-Tos

Note

Three user accounts are set up by default during the installation of Klaros-Testman-
agement an administrator account, a manager account and a tester account.

Username Password

admin admin

manager manager

tester tester

Table 3.1. User Roles

1. Log in as administrator and navigate to Configure - Integration - Issue Management.

2. Press the New button.

Figure 3.8. The Issue Management page

3. Select JIRA in the System drop-down list.

4. Enter PRINTER in the Project text field (or the name of a test project, e.g. PLAYGROUND)

5. Enter Hardware Team in the Description text field.

6. (Optional) If you have a JIRA system to test with, enter the address in the URL text field and
press the Validate button.

7. Press the Save button to save your new issue management system.

Repeat the process, selecting Mantis instead of JIRA and using Software Team as the descrip-
tion.

Now these two issue management systems can be assigned to projects within Klaros-Testman-
agement.

This concludes the role of the administrator account in our quick start guide. Log out of Klaros-
Testmanagement now and log in using a manager account.

25

How-Tos

3.6. Issues

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.1.3.1, “ Executing Single Test Cases ” of the quick-start guide.

Klaros-Testmanagement supports the creation of issues in issue management systems (IMS)
(see Section 3.5, “ Configuring Issue Management System ”) as well as linking them with test
cases. This can be achieved either by creating an issue in the IMS from within Klaros-Testman-
agement, or by using the Link Issues feature to link pre-existing issues and test cases.

Both of these actions can be carried out from within the manual test runner or in the Evaluate -
Link Issues section of Klaros-Testmanagement. Each Results Overview page in the manual test
runner has the Link Issue and Create Issue buttons.

3.6.1. Linking Issues

Figure 3.9. Linking Issues

1. Login to Klaros-Testmanagement using the Tester account.

2. Click on the Evaluate link in the topbar.

3. Select the Issues menu entry in the sidebar.

4. Press the icon in the action column of the test case Test if the printer prints at least 10
pages per minute.

5. Press the Create button.

6. Select the Hardware Team issue management system from the Issue Management System
dropdown list.

7. Enter a valid issue id in the ID text field (this id has to match an existing issue in the IMS).

8. Press the icon next to the ID field (Please wait a few moments until the issue has been
retrieved from the IMS).

26

How-Tos

9. Select the system under test Printer Model 1 in the System under Test dropdown list.

10. Press the Link button.

The list of assigned issues should now contain a single entry.

3.6.2. Creating Issues

Figure 3.10. Creating Issues

1. Login to Klaros-Testmanagement using the Tester account.

2. Press the Evaluate link in the topbar.

3. Select the Issues menu entry in the sidebar.

4. Press the New button.

5. Select the Software Team issue management system from the Issue Management System
dropdown list.

6. Enter The printer Model 1 cannot print documents larger than 50 Mb into the Summary
field.

7. In the Description field, enter The Model 1 version of the printer cannot print documents

which are larger than 50 Mb in size. This is regardless of the document type

(e.g. pdf or txt).

8. Select the test case Test if the printer prints at least 10 pages per minute in the Test Case
dropdown list.

27

How-Tos

9. Press the Save button.

You should now see a message The issue was successfully created in Mantis with ID XYZ. in the
log panel on top of the screen.

3.7. Revisions

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.1.2.3, “ Creating Test Cases ” of the quick-start guide.

Test requirements can change during the lifecycle of a project, due to various internal or external
changes. Let's assume that in our Printer project for example, 20 pages per minute instead of 10
are the new status quo for printers. Instead of copying and editing the test case Test if the printer
prints at least 10 page per minute you can simply create a new revision for that test case.

Note

With Klaros-Testmanagement you can create Revisions for test cases, test suites and
requirements.

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Printer project.

3. Press the Define link in the topbar.

4. Select the Test Cases menu entry in the sidebar.

5. Press the icon on the test case Test if the printer prints at least 10 page per minute.

6. Press the Revisions tab.

7. Press the New Revision button.

8. Enter requirements have changed in the Comments text field.

9. Press the Yes button.

10. Press the Properties tab.

11. Change the Description of the test case to Test if the printer prints at least 20 page

per minute .

You have successfully created a new revision of the test case.

Note

When creating a new revision, this revision gets selected as the active revision for that
test case. You can, at any time, switch back to an older revision via the revision tab.

28

How-Tos

3.8. Requirements

 Feature only available in Klaros-Testmanagement Enterprise Edition

Requirements are conditions which must be met in order for the product to be considered ready.
A requirement can be linked to several test cases, which must be executed in order to fulfill this
requirement.

In the course of this howto, we will create a requirement, link it to a test case and execute this
test case.

Figure 3.11. The Requirements Page

1. Select the Define section in the topbar.

2. Select the Requirements menu entry in the sidebar.

3. Press the New button.

4. Write The printer prints at least 10 pages per minute in the Name text field.

5. Select High from the Priority dropdown list.

6. Press the Save button.

7. Press the icon of the requirement The printer prints at least 10 pages per minute.

8. Select the Test Cases tab.

9. Press the Add button.

10. Select the test case Test if the printer prints at least 10 page per minute.

11. Press the Add button.

Multiple Requirements

You can assign multiple test cases to the same requirement.

You can also assign test cases to multiple requirements!

29

How-Tos

Figure 3.12. The Requirements Details Page

Now we will execute the test case with which the requirement is assigned to.

1. Switch to the Execute section in the topbar.

2. Select the Run Test Case menu entry in the sidebar.

3. Press the Execute button.

4. Press the Execute button.

5. Press the Passed button.

6. Press the Yes button.

You have now executed a test case that is assigned to a requirement. Let's see the results of this
test case on the requirements page.

1. Select the Define section in the topbar.

2. Select the Requirements menu entry in the sidebar.

3. Press the icon of the requirement The printer prints at least 10 pages per minute.

4. Select the Results tab.

In the results tab, you can see the results of all test cases that are assigned to this requirement.
Since we've executed a single test case, there is only one element in this table. Pressing the
icon shows you the details of this test case result.

3.9. Iterations

 Feature only available in Klaros-Testmanagement Enterprise Edition

An iteration represents a single test cycle in a project. This helps to synchronize the test process
with an agile development process (e.g. Scrum). An iteration can represent a milestone for a
project. In a software development project for example, an iteration could be The core functional-
ity is working.

In this section, we will create an iteration, learn how to activate or deactivate iterations and how
to assign requirements to a specific iteration.

30

How-Tos

Figure 3.13. The Iterations Page

1. Select the Define section in the topbar.

2. Select the Iterations menu entry in the sidebar.

3. Press the New button.

4. Enter Sprint 01 - Alpha stage in the Name text field.

5. Press the icon.

6. Enter All printer models can print a test page without an error. and All printers

print at least 10 pages per minute. in the Success Criteria text field.

7. Select the Properties tab.

8. Enter All printer models can print a test page without an error. and All printers

print at least 10 pages per minute. in the Success Criteria text field.

9. Press the Save button.

You have now successfully created an iteration. Since this is the only iteration in the project, it
gets activated. You can see the active iteration in the topbar (see Section 3.9, “ Iterations ”).

Figure 3.14. The Selected Iteration in the Topbar

Using Iterations with Requirements

Iterations are more useful when combined with requirements (see Section 3.8, “ Re-
quirements ”). For example, the iteration "Alpha release" of a project could contain
the requirements All database unit tests pass and The setting menu is working.

Figure 3.15. The Iteration Details Page

31

How-Tos

1. Select the Requirements tab.

2. Select the requirement The printer prints at least 10 pages per minute.

3. Press the Add button.

4. Press the Add button.

5. Click on the Assign button.

6. Select the requirement The printer prints at least 10 pages per minute.

7. Click on the Assign button.

You have now successfully linked a requirement to an iteration.

If an iteration is active, only results and artefacts for this iteration are displayed. To deselct the
current iteration or switch to a different one, follow the next steps.

1. Click in the icon in the topbar.

2. Select the empty entry in the iteration dropdown box.

32

Chapter 4. Report Tutorial
This tutorial will show how to create reports for Klaros-Testmanagement. Please note that custom
reports are only available in Klaros-Testmanagement Enterprise Edition. Basic knowledge in Java
programming and XML might be helpful to understand this tutorial. An example of the resulting
report can be found here. The complete code can be downloaded here, feel free to modify it to
your needs.

To create custom reports navigate via the top menu Configure and then via the side menu Report
Templates to the custom report section of Klaros-Testmanagement Enterprise Edition. You can
create a new report by pressing the New button. You can later use this report via the top menu
Evaluate and the side menu Report Templates.

4.1. Development Environment

The first step in this tutorial will describe how to set up a development environment to help with
creating reports. We recommend using Eclipse as the development framework.

Create a project to contain your reports

• Open Eclipse and right click into the Project Explorer

• In the menu then select New -> Other.

• In the dialog select Java Project as shown in the picture then click on Next.

Figure 4.1. The Wizard Selection Screen

33

http://www.klaros-testmanagement.com/files/report-tutorial/report.pdf
http://www.klaros-testmanagement.com/files/report-tutorial/TestrunReportPerSuite.zip
http://www.eclipse.org/downloads

Report Tutorial

• In the next dialog enter a title for your project (e.g. ReportTutorial) and press Finish.

Figure 4.2. The New Project Wizard

• The Package Explorer in Eclipse should now show your new project.

34

Report Tutorial

Figure 4.3. The Package Explorer

Set up the Project

• First, create a subfolder to hold your XML files. Right click on your project and select New ->
Folder. In the dialog enter xml in the Folder name field and click on Finish .

35

Report Tutorial

Figure 4.4. Creating a New Folder

• Add the Klaros-Testmanagement scripting library to your build path. Right click on our project
and select Properties. In the dialog click on Java Build Path(1), select the Libraries(2) tab and
then click on Add External JARs...(3).

36

Report Tutorial

Figure 4.5. The Build Path Setting Screen

• In the following dialog navigate to your Klaros-Testmanagement installation folder. From there
navigate to the webapps/klaros-web/WEB-INF/lib folder and select the klaros-core-x.y.z, klaros-
model-x.y.z.jar and klaros-scripting-x.y.z.jar, then click the Open button.

Figure 4.6. Selecting an External Jar File

• Finally click on the OK button in the Build Path dialog. You now have an additional entry in
your project named Referenced Libraries.

37

Report Tutorial

Figure 4.7. The Package Explorer

4.2. Preparing the Data for the Report

The next step of this tutorial will show how to gather and prepare data for the report. The report we
are going to create will show a summary of all test runs for all test cases in a test suite together
with a detailed description of all executed test steps, listed per test case per test run. To provide
the data for the report the API described in the Klaros API documentation can be used to retrieve
the required data.

The following picture shows the steps to perform to create a KlarosScript class.

Figure 4.8. Creating a Class

38

http://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.API.html

Report Tutorial

• First a class implementing the KlarosScript interface must be created. Right click on the src
folder (1) in your project and select New -> Class.

• In the new dialog enter a name for your script class (2)

• Then click on the Add button (3) and enter KlarosScript in the new dialog to provide the
KlarosScript interface for the class. Then press the ok button to close the interface dialog.

• Finally press the Finish button (4). After a short while the class should be created and Eclipse
should present you the following view.

Figure 4.9. The Created Class

• Before entering any code, the import statements must be provided.

 import de.verit.klaros.scripting.*;

 import de.verit.klaros.core.model.*;

 import java.util.*;

• The code to be executed must be entered into the execute method of the KlarosScript class. To
provide a certain level of flexibility, the test suite to generate the report for should be passed as
a parameter to the KlarosScript class. We will see later in this tutorial how this works in detail.
It is achieved by the following line of code:

 String suiteName = (String)context.getParameterValue("suiteName");

• Next the database is accessed to retrieve the data for the report. The following snippet shows
how to access the database. This code selects all entries from the KlarosTestSuite table whose
ids matches the test suite id passed to the KlarosScript and that are present in the currently
active project. The result is returned as a list, though only one single entry is expected.

 String suiteQuery = "select g from KlarosTestSuite g where g.name='" + suiteName + "'";

 if (context.getActiveProject() != null) {

 suiteQuery += " and g.configuration.name='";

 suiteQuery += context.getActiveProject().getName();

 suiteQuery += "'";

 }

 List testSuites = context.executeQuery(suiteQuery);

• To avoid any errors when executing the KlarosScript the following code is contained in an if-
clause if no matching test suite was found.

 if (!testSuites.isEmpty()) {

 testSuite = (IKlarosTestSuite) testSuites.get(0);

 ...

 }

• Add the test suite to the context so it can later be retrieved from the template.

39

Report Tutorial

 testSuite = (IKlarosTestSuite) testSuites.get(0);

 context.add("testSuite", testSuite);

• Now the preparations for the pie chart in the report can begin. The report should present a
pie chart showing the amount of test case results in the states error, skipped, failure and suc-
cess. Therefore a list of KlarosTestCaseResult is required for each result type. This code is also
placed inside the if-clause.

 List<KlarosTestCaseResult> error = new ArrayList<>();

 List<KlarosTestCaseResult> failure = new ArrayList<>();

 List<KlarosTestCaseResult> success = new ArrayList<>();

 List<KlarosTestCaseResult> skipped = new ArrayList<>();

• Now the lists get filled. First we step through the list of test cases belonging to the test suite.

 for (KlarosTestCase klarosTestCase : testSuite.getTestCases())

 {

 ...

 }

• Inside this loop we iterate over the test results for each test case. This can be more than one
since a test case can have several test runs. The following code must be placed in the for loop
from the step before.

 for (KlarosTestCaseResult testResult: klarosTestCase.getResults())

 {

 ...

 }

• We now have the test results at hands and can distribute them to the four lists defined earlier,
depending on the state of the test result. This code must be placed inside the second for loop
defined one step before.

 if (testResult.isError()) error.add(testResult);

 else if (testResult.isFailure()) failure.add(testResult);

 else if (testResult.isPassed()) success.add(testResult);

 else if (testResult.isSkipped()) skipped.add(testResult);

• We are almost done. The last step is to store the four lists containing the KlarosTestCaseResults
in the context to access it later from the template. This code is placed inside the outermost if-
clause and outside of the two for loops.

 context.add("error", error);

 context.add("failure", failure);

 context.add("success", success);

 context.add("skipped", skipped);

• The complete KlarosScript class can be found in the archive here.

4.3. Create the Layout of the Report

Klaros-Testmanagement uses the JBoss Seam PDF framework to render the report and fill the
retrieved data into the layout template.

1. We will start with an empty document that contains a header and footer definition.

<p:document xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:p="http://jboss.org/schema/seam/pdf"

 title="Klaros-Testmanagement Test Plan Report" marginMirroring="true"

40

http://www.klaros-testmanagement.com/files/report-tutorial/TestrunReportPerSuite.zip
https://docs.jboss.org/seam/latest/reference/html/itext.html

Report Tutorial

 author="#{user.name}" creator="#{user.name}" pageSize="A4">

 <f:facet name="header">

 <p:font size="8">

 <p:header borderWidthBottom="0.1" borderColorBottom="black" borderWidthTop="0" alignment="center">

 <p:text value="Test Run Report - Generated on #{date} by #{user.name}" />

 </p:header>

 <p:footer borderWidthTop="0.1" borderColorTop="black" borderWidthBottom="0" alignment="center">

 <p:text value="Page " />

 <p:pageNumber />

 <p:text value=" - Created with Klaros-Testmanagement (www.klaros-testmanagement.com)" />

 </p:footer>

 </p:font>

 </f:facet>

 <p:paragraph>

 <p:text value=" " />

 </p:paragraph>

</p:document>

This snippet creates a header that is displayed on every page. It contains the date and the
name of the Klaros-Testmanagement user who created the report. The footer contains the page
number and an informative text that the report was created with Klaros-Testmanagement. Note
that for the header the borderWidthBottom attribute was set to provide a separation from the
following text, while for the footer the borderWidthTop attribute was used to create a single line
for separation.

2. Next we create a front page accumulating the main information about the report.

The layout of the front page is done using <p:paragraph> elements for formatting. These ele-
ments use alignment and spacing to define the position where the text will be placed. To change
the font of the paragraphs, you can use the <p:font> element and use its style and size attrib-
utes to highlight certain parts.

 <p:paragraph alignment="center" spacingAfter="100">

 <p:text value="" />

 </p:paragraph>

 <p:font style="bold" size="32">

 <p:paragraph alignment="center" spacingAfter="75">

 <p:text value="Test Run Report" />

 </p:paragraph>

 </p:font>

 <p:font style="normal" size="12">

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="Created by" />

 </p:paragraph>

 </p:font>

 <p:font style="bold" size="16">

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="#{user.name} (#{user.email})" />

 </p:paragraph>

 </p:font>

 <p:font style="normal" size="12">

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="on" />

 </p:paragraph>

 </p:font>

 <p:font style="bold" size="16">

 <p:paragraph alignment="center" spacingAfter="75">

 <p:text value="#{date}" />

 </p:paragraph>

41

Report Tutorial

 </p:font>

 <p:font style="normal" size="12">

 <p:paragraph alignment="center" spacingAfter="30">

 <p:text value="Testsuite " />

 <p:text value="#{testSuite.name}" />

 <p:text value=" - " />

 <p:text value="#{testSuite.shortname}" />

 <p:text value=" - revision " />

 <p:text value="#{testSuite.revisionId}" />

 </p:paragraph>

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="SUT: " />

 <p:text value="#{testSuite.sut.name}" />

 <p:text value=" - " />

 <p:text value="#{testSuite.sut.productversion}" />

 </p:paragraph>

 </p:font>

 <p:newPage />

An image of a sample front page can be found below.

Figure 4.10. A Sample Front Page of a Report

As you might have noticed from the header and footer definition, values stored in the context
can be accessed by preceding the context variable enclosed in curly brackets with a #, e.g.
#{user.name}. The context variable for the user is automatically inserted into the context by
Klaros-Testmanagement. You might remember the part where we prepared the data for this
report and added the test suite to the context.

42

Report Tutorial

context.add("testSuite", testSuite);

For the front page we access this context variable to retrieve the data that came with this test
suite, e.g. #{testSuite.name}, #{testSuite.shortname}, and #{testSuite.revisionId}. You can find
the accessible attributes in the Klaros-Testmanagement API Documentation reference in the
online documentation. All attributes that have a getter can be accessed, e.g. for #{testSuite.
name} see the interface IKlarosTestSuite where you will find the method getName in its IK-
larosLabeledObject parent interface. To add a page break to the document, you can use

 <p:newPage />

3. Now that we have a front page we can start to fill in the data we prepared and stored in the
context. To give a quick overview over the test results we will start with a pie chart displaying
the amount of successful, failed, skipped, and errorneous test case results in this test suite.

 <p:paragraph horizontalAlignment="center" spacingAfter="25">

 <p:piechart title="Testresults per Testrun" direction="anticlockwise"

 circular="true" startAngle="30" labelGap="0.1" labelLinkPaint="black"

 plotBackgroundPaint="white" labelBackgroundPaint="white" is3D="true"

 borderVisible="false">

 <p:series key="results">

 <p:data key="Error [#{error.size}]" value="#{error.size}"

 sectionPaint="#FF0A0A" />

 <p:data key="Success [#{success.size}]" value="#{success.size}"

 sectionPaint="#33CC00" />

 <p:data key="Failure [#{failure.size}]" value="#{failure.size}"

 sectionPaint="#FFCC00" explodedPercent=".2" />

 <p:data key="Skipped [#{skipped.size}]" value="#{skipped.size}"

 sectionPaint="#FFFFFF" />

 </p:series>

 </p:piechart>

 </p:paragraph>

An example of a generated pie chart can be found below.

Figure 4.11. A Generated Pie Chart

43

http://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.API.html#package-de.verit.klaros.core.model

Report Tutorial

For a detailed description about how to layout the pie chart and many other charts, please check
the seam-pdf documentation. Again you might remember that we added four List<Klaros-
TestCaseResult> objects to the context:

 context.add("error", error);

 context.add("failure", failure);

 context.add("success", success);

 context.add("skipped", skipped);

These four objects represent the results of our test suite. We can simply use the size of the
collections representing the data for the pie chart:

<p:data key="Error [#{error.size}]" value="#{error.size}" sectionPaint="#FF0A0A" />

4. Next we want to print a page for each Test Case contained in the test suite and present its
data in a table.

As this might get a bit lengthy, only fragments will be presented here. An example can be found
below.

Figure 4.12. The Header of a Test Case Report

First we need to loop over all test cases of the test suite:

 <ui:repeat value="#{testSuite.testCases}" var="testCase">

 ...

 </ui:repeat>

A loop can be done using the <ui:repeat> element. The attribute value gets a collection and the
attribute var gets the name of a variable that can be used for further processing, e.g. test-
Case. With every step through the loop, the variable testCase will get the next element from
the collection.

Now for the table. We need a two column table and the width of the second column should be
three times the size of the first. The code is as follows:

 <p:table columns="2" widths="1 3">

 ...

 </p:table>

Let's get some data into the table. Therefore we have to describe what each table cell will look
like. This code goes inside the <p:table> element.

 <p:cell horizontalAlignment="right">

 <p:font style="bold" size="8">

 <p:paragraph>

 <p:text value="Project: " />

 </p:paragraph>

44

https://docs.jboss.org/seam/latest/reference/html/itext.html

Report Tutorial

 </p:font>

 </p:cell>

 <p:cell>

 <p:paragraph alignment="left">

 <p:text value="#{testCase.configuration.name}" />

 </p:paragraph>

 </p:cell>

 <p:cell horizontalAlignment="right">

 <p:font style="bold" size="8">

 <p:paragraph>

 <p:text value="Creator: " />

 </p:paragraph>

 </p:font>

 </p:cell>

 <p:cell>

 <p:paragraph alignment="left">

 <p:text value="#{testCase.creator.name}" />

 </p:paragraph>

 </p:cell>

 ...

Since we defined that the table should be two columns wide, two <p:cell> elements build one
row in the table. In the code above the first row holds the name of the project while the second
line holds the name of the user who created the test case. A cell can also contain text formatting
information as you can see from the <p:font> elements.

5. Next we need the test case results for the test case being displayed. This is where another ele-
ment comes in. If there is no test result for a test case contained in the test suite an informative
text should be displayed instead of just leaving a blank space.

 <ui:fragment rendered="#{testCase.results.isEmpty()}">

 <p:font style="normal" size="14">

 <p:paragraph alignment="left" spacingAfter="15"

 indentationLeft="10">

 <p:text value="No test runs found for this Test Case." />

 </p:paragraph>

 </p:font>

 </ui:fragment>

Notice the <ui:fragment rendered="..."> element. This part of the document is only integrat-
ed into the pdf if the condition defined in the rendered attribute evaluates to true. This could
be compared to an if-clause in modern programming languages. In the expression

#{testCase.results.isEmpty()}

the isEmpty() method of a the test case result list is called which evaluates to a boolean value.
Next we have to define the block that displays the data in case there are test results present
for the test case:

 <ui:fragment rendered="#{!testCase.results.isEmpty()}">

 ...

 </ui:fragment>

Note the ! which is used to negate the boolean expression we used in the block before. The
code inside this expression is called if there is at least one test case result.

45

Report Tutorial

6. And now we loop over the results of the test cases, which will include each
test run for a test case. An example of a Test Run can be found below.

 <ui:repeat value="#{testCase.results.toArray()}" var="testResult">

 <!-- Start Test Result summary (equivalent to Test Run) -->

 ...

 </ui:repeat>

This will provide us with the test results of a test case in the variable testResult. The next
pieces of code include the displaying of a summary of the test result which is quite similar
to the code used displaying the test case summary. You can have a look at it in the attached
sourcefile. The next thing to display are the test case steps and their results for the current
test run.

7. Therefore another loop is added inside the Test Result loop.

 <!-- Start Test Step Result summary -->

 <ui:fragment rendered="#{!testResult.stepResults.isEmpty()}">

 <ui:repeat value="#{testResult.stepResults}" var="testStepResult">

 ...

 </ui:repeat>

 </ui:fragment>

 <ui:fragment rendered="#{testResult.stepResults.isEmpty()}">

 <p:font style="normal" size="10">

 <p:paragraph alignment="left" spacingAfter="35"

 indentationLeft="25">

 <p:text value="No test step results found." />

 </p:paragraph>

 </p:font>

 </ui:fragment>

Inside the <ui:repeat> </ui:repeat> block a table is created. This table should be displayed
if there are any results for the test case step. The table displays the precondition, action, and
postcondition of the test case step and also the test case step result, the test case step sum-
mary, and the test case step description. The test case step result cell of the table will get

46

Report Tutorial

coloured according to the result, e.g. green if the step passed. Each table will have the number
of the step as a headline.

8. Displaying the step number.

 <p:font style="bold" size="8">

 <p:paragraph indentationLeft="20">

 <p:text value="Step #{testResult.stepResults.indexOf(testStepResult)+1}" />

 </p:paragraph>

 </p:font>

Here you can see how to retrieve the index of the test case step result from the list of test
results. testStepResult is the variable from the inner loop, while testResult is the variable from
the outer loop. As counting starts at zero we have to increment the retrieved value, otherwise
the first step would be step 0.

9. Displaying the table if the test case has at least one test case step defined.

 <p:table columns="3" widths="3 3 3" spacingBefore="5"

 rendered="#{testCase.testCaseSteps!=null and testCase.testCaseSteps.size() > 0}">

 ...

 </p:table>

10.Retrieving the test case step properties (precondition, action, postcondition)

 <p:cell horizontalAlignment="left">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text

 value="#{testCase.testCaseSteps.get(testStepResult.precondition}" />

 </p:paragraph>

 </p:font>

 </p:cell>

To get to the test case step properties we have to access the test case to retrieve the data.
From the list of test case steps we retrieve the test case step via the index in the list of the test
case step results and then the precondition can be accessed. The same applies to the action
and the postcondition of the test case step.

11.Colouring a cell depending on the test step result.

 <ui:fragment rendered="#{testStepResult.isPassed()}">

 <p:cell backgroundColor="rgb(0,255,0)"

 horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Passed" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

 <ui:fragment rendered="#{testStepResult.isError()}">

 <p:cell backgroundColor="rgb(255,0,0)"

 horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Error" />

 </p:paragraph>

 </p:font>

 </p:cell>

47

Report Tutorial

 </ui:fragment>

 <ui:fragment rendered="#{testStepResult.isFailure()}">

 <p:cell backgroundColor="rgb(255,215,0)"

 horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Failed" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

 <ui:fragment rendered="#{testStepResult.isSkipped()}">

 <p:cell horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Skipped" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

The cells are rendered depending on the status of the test case step, therefore the methods
isError(), isFailure() and so on are called for the test result object under processing. The
cell gets its colour by setting the backgroundColor attribute to the desired rgb value.

48

Glossary

A
Admin See Administrator.

Administrator User role that has access to all functionalities in Klaros-Testmanage-
ment.

Artifact An Artifact is a definable object like a Project, Iteration, Requirement,
Test Environment, System under Test, Job, Test Case, Test Suite or Test
Case.

B
Bugzilla Bugzilla is an open source bug tracking and testing tool.

C
Category Artifacts can be assigned to any number of user-defined categories.

Using Categories Users can group related Artifacts together.

C
Coverage A database is a collection of information organized into interrelated

tables of data and specifications of data objects.

Compliance

D
Database A database is a collection of information organized into interrelated

tables of data and specifications of data objects.

Defect See Issue.

Defect Management System See Issue Management System.

E
E-Mail Electronic mail, often abbreviated as e-mail, is any method of creating,

transmitting, or storing primarily text-based communications with dig-
ital communications systems.

Error An error is the inability of the system to perform a test correctly. Not
to be confused with Failure.

49

http://www.bugzilla.org/

Glossary

F
Failure A failure is a discrepancy between a computed, observed, or measured

value or condition and the true, specified, or theoretically correct value
or condition. Not to be confused with Error.

G
Guest User role that can display artifacts and reports but may not change any

data.

GUIdancer GUIdancer is an Eclipse-based tool for automated functional testing
through the Graphical User Interface (GUI).

I
Incident See Issue.

Incident Management Sys-
tem

See Issue Management System.

Issue The term issue is a unit of work to accomplish an improvement in a
system. An Issue could be a bug, a requested feature, task, missing
documentation, and likewise.

Issue Management System An Issue Management System (Issue Tracking System) is a software
to manage Issues.

Issue Tracking System See Issue Management System.

Iteration An iteration is a complete development loop resulting in a release (in-
ternal or external) of an executable product, a subset of the final prod-
uct under development, which grows from iteration to iteration to be-
come the final product (ISTQB glossary).

J
Java Java is a programming language. Most often, Java is used as a abbre-

viation for Java Runtime Environment, which needs to be installed in
order to run Klaros-Testmanagement.

Java Runtime Environment The Java Runtime environment needs to be installed in order to exe-
cute applications programmed in the Java programming language.

JavaScript JavaScript is a scripting language most often used to add functional-
ity to web pages. Most newer Web browsers can process JavaScript
generated code.

Java Runtime Environment See Java Runtime Environment.

JIRA JIRA is a bug tracking, Issue tracking, and project management system
by Atlassian Software .

50

http://www.bredex.de/index.php/guidancer_jubula_en.html
http://www.atlassian.com/software/jira/
http://www.atlassian.com/

Glossary

Job Jobs may consist of the execution of Test Cases, Test Suites or any
other possible task. Jobs can be nested and assigned to individual
users. The executions and results of jobs can be tracked by Klaros-
Testmanagement.

Jubula Jubula provides automated functional GUI testing for various types of
applications.

JUnit JUnit is a unit testing framework for the Java programming language.

M
Manager User role that has access to create, edit, delete and search for objects,

run test cases and test suites, show results and generate reports.

Mantis Mantis (MantisBT, Mantis Bug Tracker) is an open source bug tracking
system.

O
Operating System An operating system (commonly abbreviated to either OS or O/S) is

an interface between hardware and applications. It is responsible for
the management and coordination of activities and the sharing of the
limited resources of the computer. Common contemporary operating
systems include Microsoft Windows, Mac OS, Linux, BSD and Solaris.

OS See OS.

P
Postcondition Environmental and state conditions that must be fulfilled after the ex-

ecution of a test or test procedure.

Precondition Environmental and state conditions that must be fulfilled before the
component or system can be executed with a particular test or test
procedure.

Project A project is the main unit that contains all other Artifacts that are need-
ed to execute Test Cases.

Q
QFTest QF-Test is a professional tool for automated testing of Java and Web

applications with a graphical user interface from Quality First Software.

R
Redmine Redmine is an open source bug tracking, issue tracking, and project

management system.

51

http://www.eclipse.org/jubula/
http://www.junit.org/
http://www.mantisbt.org/
http://www.qfs.de/en/qftest/
http://www.qfs.de/en/
http://www.redmine.org/

Glossary

Requirement A condition or capability needed by a user to solve a problem or achieve
an objective that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other for-
mally imposed document (After IEEE 610).

Role A role defines the rights the rights a user has regarding the application
or selected projects.

In Klaros-Testmanagement a user can take the role of an Administra-
tor, Manager, Tester or Guest.

S
Selenium Selenium is a web browser automation tool primarily used for automat-

ed testing of web apps. Selenium is able to produce JUnit-compatible
test results, which can be imported into Klaros-Testmanagement.

SUT See System under Test.

System Account A System Account is a user that is not able to login at the login page and
interactively control the application. System Accounts may be used for
automated tasks like importing test results.

If this flag is set the user is not able to login at the login page and
interactively control the application. System accounts may be used for
automated tasks like importing test results.

System under Test A System under Test is used to represent a version of a software prod-
uct that can be tested.

T
Test Case A Test Case is a set of input values, execution preconditions, expected

results and execution post-conditions, developed for a particular ob-
jective or test condition, such as determine whether an application or
software system meets its specifications.

Test Case Result The final verdict on the execution of a test and its outcomes, like pass,
fail, or error. The result of error is used for situations where it is not
clear whether the problem is in the test object.

Test Case Step A test case step consists of execution preconditions, expected results
and execution post-conditions for a single action during test execution.

Test Environment Test Environments represent the extrinsic settings that may influence
the test result. Examples for components of a Test Environments are
the Operating System or an application server (e.g. Tomcat 7 on Ubun-
tu 12.10).

Tester User role that has access to display artifacts and reports and run jobs,
test cases and test suites.

52

Glossary

Test Execution The process of running a test by the component or system under test,
producing actual result(s).

Test Run The result of running a test case or test suite under the same system
under test and test environment giving or more test case result(s).

Test Suite A test suite is a set of test cases and the test cases can be executed in
groups. The test suite will be used to verify and ensure that a product
or system meets its design specifications and other requirements.

Trac Trac is an open source bug tracking and issue tracking system.

U
URL A Uniform Resource Locator (URL) specifies where an identified re-

source is available and the mechanism for retrieving it. Examples
for URLs are http://www.klaros-testmanagement.com/" or file:///C:/
klaros.txt

W
Web browser A Web browser is a software application which enables a user to dis-

play and interact with text, images and other information typically lo-
cated on a Web page at a Web site on the World Wide Web or a local
area network.

Windows Windows is the name of several Operating Systems by Microsoft.

53

http://trac.edgewall.org/
http://www.klaros-testmanagement.com/

	Klaros-Testmanagement Tutorial
	Table of Contents
	Chapter 1. Introduction
	1.1. Navigation

	Chapter 2. Quick Start Guide
	2.1. Setup
	2.1.1. Creating a Project
	2.1.1.1. Assigning Issue Management Systems
	2.1.1.2. Creating User-Defined Properties

	2.1.2. Creating Test Environments
	2.1.2.1. Assigning Test Environments to Categories
	2.1.2.2. Creating Systems under Test
	2.1.2.2.1. Assigning User Defined Property Values

	2.1.2.3. Creating Test Cases
	2.1.2.4. Creating Test Suites

	2.1.3. Executing Tests
	2.1.3.1. Executing Single Test Cases
	2.1.3.2. Executing Test Suites

	2.1.4. Results and Reports

	Chapter 3. How-Tos
	3.1. User Role Management
	3.1.1. Limiting Project Access

	3.2. Categorization
	3.3. User Defined Properties
	3.4. Pausing and Resuming Test Runs
	3.5. Configuring Issue Management System
	3.6. Issues
	3.6.1. Linking Issues
	3.6.2. Creating Issues

	3.7. Revisions
	3.8. Requirements
	3.9. Iterations

	Chapter 4. Report Tutorial
	4.1. Development Environment
	4.2. Preparing the Data for the Report
	4.3. Create the Layout of the Report

	Glossary

